New Article Published in Journal of Geometry and Physics

Our new article was recently published in The Journal of Geometry and Physics. It is shown that under certain conditions, The Einstein Field Equations have the same form as a fold bifurcation seen in Dynamical Systems theory, showing even a deeper connection between General Relativity and Dynamical Systems theory! (You can click the image below to be taken to the article):

Advertisements

Dynamical Systems in Cosmology Lectures

In the final two lectures of my differential equations class , I discussed how Dynamical Systems theory can be used to understand and describe the dynamics of cosmological solutions to Einstein’s field equations. Videos and lecture notes posted below:

Lecture Notes:





Attempts at a General Einstein Equation for an Arbitrary FLRW Cosmology

I tried to derive a general Einstein field equation for an arbitrary FLRW cosmology. That is, one that can handle any of the possible spatial curvatures: hyperbolic, spherical, or flat. Deriving the equation was easy, solving it was not! It ends up being a nonlinear, second-order ODE, with singularities at a=0, which turns out to be the Big Bang singularity, which obviously is of physical significance. Anyways, here’s a log of my notebook, showing the attempts. More to follow! 

New paper published on cosmological singularities

My new paper has now been published in Annalen der Physik, which is a great honour, because 100 years ago, Einstein’s General Theory of Relativity was also published in the same journal.

This paper describes a method by which one is able to determine whether a given spatially flat cosmological model produces finite-time singularities, and also gives some examples of interesting cosmological model configurations. 

The paper can be accessed by clicking the image below: 


The preprint can be accessed here on the arXiv. 

Making a Cosmological Model

What goes into making a cosmological model? Here is a presentation (that was part of my Ph.D. dissertation) that I have reproduced and embedded here to describe what actually goes into the making of a cosmological model. After describing some general properties, I describe specifically a early-universe model that contains a viscous fluid and a magnetic field. 

The background mathematics can be found in this old presentation of mine here:

Equations Published in a Cosmology Textbook

One of my earliest works was deriving equations which themselves were forms of Einstein’s field equations that described the state of the early universe, which may have had dominant viscous effects. I was delighted to learn that these equations were published in Springer’s Handbook of Spacetime Cosmology textbook.

Here is a snapshot of the textbook page citing these equations:

image1

 

New Paper on Stochastic Eternal Inflation

Our new paper was accepted for publication in Physical Review D. The goal of the paper was to calculate the probability that a multiverse could emerge from a more general background spacetime, in this case, Bianchi Type I coupled to a chaotic inflaton potential. Basically, we found that a multiverse being generated from such a scenario has a small probability of occurring. Further, the fine-tuning problem that the multiverse / eternal inflation is supposed to solve doesn’t actually occur, because fine-tuning is still required of the geometry of the background spacetime, the initial conditions, and most importantly, the amount of anisotropy.

prdabstract

The preprint can be read on the arXiv here.