An Equation to Predict NBA Playoff Probabilities

Based on a previous paper I wrote that used machine learning to determine the most relevant factors for teams making the NBA playoffs, I did some further analysis in an attempt to come up with an equation that outputs the probability of an NBA team making the playoffs in a given season.

From the aforementioned paper, one concludes that the two most important factors in determining whether a team makes the playoffs or not is its opponent assists per game and opponent two-point shots made per game. Based on that, I came up with the following equation:

\boxed{P(playoffs) = 0.49 \left[ \frac{1}{1 + \exp\left(-7.6683 +0.2489 o2P   \right)   }   \right] + 0.51 \left[ \frac{1}{1 + \exp\left(-9.1835 +0.4211 oAST   \right)   }   \right]}

A plot of this equation is as follows:

probplot1

A contour plot is perhaps more illuminating:

contourprobplot1

One can see from this contour plot that teams have the highest probabilities of making the playoffs when their opponent 2-point shots and opponent assists are both around 20. In general, we also see that while a team can allow more opponent 2-point shots, having a low number of opponent assists per game is evidently the most important factor.

 

Using this equation, I was able to classify 71% of playoff teams correctly from the last 16 years of NBA data. Even though the playoff classifier developed in the paper mentioned above is more accurate in general, those methods are non-parametric, so, it is difficult to obtain an equation. To get an equation as we have done here, can be extremely useful for modelling purposes and understanding the nature of probabilities in deciding whether a certain team will make the playoffs in a given season. (Also: note that we are using the convention of using 0.50 as the threshold probability, so a probability output of >0.5, is classified as a team making the playoffs.)

Advertisements

When is it optimal to shoot a 3-Point Shot

A very interesting result: computing payoffs of players, the following is a diagram that shows when it is optimal for a player to shoot a 2 point or a 3-point shot. One sees that it is hardly ever optimal for a player to shoot a 3-point shot, since the region corresponding to 3-point optimality is quite narrow. This can be interpreted as saying that for a 3-point attempt to be optimal, a player’s 2PT% must be roughly equal to his/her 3PT%, which is certainly not the case for the vast majority of even designated 3-point shooters in the NBA!

updatedpic32point
The grey region is where shooting a 3-point shot is optimal, the blue region is where shooting a 2-point shot is optimal, and the red line that separates these boundaries is where the payoff is equivalent in both approaches.

What if Michael Jordan Played in Today’s NBA?

By: Dr. Ikjyot Singh Kohli

It seems that one cannot turn on ESPN or any YouTube channel nowadays without the ongoing debate of whether Michael Jordan is better than Lebron, what would happen if Michael Jordan played in today’s NBA, etc… However, I have not seen a single scientific approach to this question. Albeit, it is sort of an impossible question to answer, but, using data science I will try.

From a data science perspective, it only makes sense to look at Michael Jordan’s performance in a single season, and try to predict based on that season how he would perform in the most recent NBA season. That being said, let’s look at Michael Jordan’s game-to-game performance in the 1995-1996 NBA season when the Bulls went 72-10.

Using neural networks and Garson’s algorithm , to regress against Michael Jordan’s per game point total, we note the following:

jordanpoints
In this plot, the “o” stands for opponent.

 

One can see from this variable importance plot, Michael’s points in a given game were most positively associated with teams that committed a high number of turnovers followed by teams that make a lot of 3-point shots. Interestingly, there was not a strong negative factor on Michael’s points in a given game.

Given this information, and the per-game league averages of the 2017 season, we used this neural network to make a prediction on how many points Michael would average in today’s season:

Michael Jordan: 2017 NBA Season Prediction: 32.91 Points / Game (+/- 6.9)

It is interesting to note that Michael averaged 30.4 Points/Game in the 1995-1996 NBA Season. We therefore conclude that the 1995-1996 Michael would average a higher points/game if he played in today’s NBA.

As an aside, a plot of the neural network used to generate these variable importance plots and predictions is as follows:

jordannnet

What about the reverse question? What if the 2016-2017 Lebron James played in the 1995-1996 NBA? What would happen to his per-game point average? Using the same methodology as above, we used neural networks in combination with Garson’s algorithm to obtain a variable importance plot for Lebron James’ per-game point totals:

lebronplot

 

One sees from this plot that Lebron’s points every game were most positively impacted by teams that predominantly committed personal fouls, followed by teams that got a lot of offensive rebounds. There were no predominantly strong negative factors that affected Lebron’s ability to score.

Using this neural network model, we then tried to make a prediction on how many points per game Lebron would score if he played in the 1995-1996 NBA Season:

Lebron James: 1995-1996 NBA Season Prediction: 18.81 Points / Game (+/- 4.796)

This neural network model predicts that Lebron James would average 18.81 Points/Game if he played in the 1995-1996 NBA season, which is a drop from the 26.4 Points/Game he averaged this most recent NBA season.

Therefore, at least from this neural network model, one concludes that Lebron’s per game points would decrease if he played in the 1995-1996 Season, while Michael’s number would increase slightly if he played in the 2016-2017 Season.

So, What’s Wrong with the Knicks?

By: Dr. Ikjyot Singh Kohli

As I write this post, the Knicks are currently 12th in the Eastern conference with a record of 22-32. A plethora of people are offering the opinions on what is wrong with the Knicks, and of course, most of it being from ESPN and the New York media, most of it is incorrect/useless, here are some examples:

  1. The Bulls are following the Knicks’ blueprint for failure and …
  2. Spike Lee ‘still believes’ in Melo, says time for Phil Jackson to go
  3. 25 reasons being a New York Knicks fan is the most depressing …
  4. Carmelo Anthony needs to escape the Knicks
  5. Another Awful Week for Knicks

A while ago, I wrote this paper based on statistical learning that shows the common characteristics for NBA playoff teams. Basically, I obtained the following important result:

img_4304

This classification tree shows along with arguments in the paper, that while the most important factor in teams making the playoffs tends to be the opponent number of assists per game, there are paths to the playoffs where teams are not necessarily strong in this area. Specifically, for the Knicks, as of today, we see that:

opp. Assists / game : 22.4 > 20. 75, STL / game: 7. 2 < 8.0061, TOV / game : 14.1 < 14.1585, DRB / game: 33.8 > 29.9024, opp. TOV / game: 13.0 < 13.1585.

So, one sees that what is keeping the Knicks out of the playoffs is specifically pressure defense, in that, they are not forcing enough turnovers per game. Ironically, they are very close to the threshold, but, it is not enough.

A probability density approximation of the Knicks’ Opp. TOV/G is as follows:

tovpgameplot1

 

This PDF has the approximate functional form:

P(oTOV) =

knicksotovg

Therefore, by computing:

\int_{A}^{\infty} P(oTOV) d(oTOV),

=

knicksotoverfc,

where Erfc is the complementary error function, and is given by:

erfc(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^2} dt

 

Given that the threshold for playoff-bound teams is more than 13.1585 opp. TOV/game, setting A = 13 above, we obtain: 0.435. This means that the Knicks have roughly a 43.5% chance of forcing more than 13 TOV in any single game. Similarly, setting A = 14, one obtains: 0.3177. This means that the Knicks have roughly a 31.77% chance of forcing more than 14 TOV in any single game, and so forth.

Therefore, one concludes that while the Knicks problems are defensive-oriented, it is specifically related to pressure defense and forcing turnovers.

 

 By: Dr. Ikjyot Singh Kohli, About the Author

Basketball Machine Learning Paper Updated 

I have now made a significant update to my applied machine learning paper on predicting patterns among NBA playoff and championship teams, which can be accessed here: arXiv Link . 

The Most Optimal Strategy for the Knicks

In a previous article, I showed how one could use data in combination with advanced probability techniques to determine the optimal shot / court positions for LeBron James. I decided to use this algorithm on the Knicks’ starting 5, and obtained the following joint probability density contour plots:

One sees that the Knicks offensive strategy is optimal if and only if players gets shots as close to the basket as possible. If this is the case, the players have a high probability of making shots even if defenders are playing them tightly. This means that the Knicks would be served best by driving in the paint, posting up, and Porzingis NOT attempting a multitude of three point shots.

By the way, a lot of people are convinced nowadays that someone like Porzingis attempting 3’s is a sign of a good offense, as it is an optimal way to space the floor. I am not convinced of this. Spacing the floor geometrically translates to a multi-objective nonlinear optimization problem. In particular, let (x_i, y_i) represent the (x-y)-coordinates of a player on the floor. Spreading the floor means one must maximize (simultaneously) each element of the following distance metric:

distancematrix

subject to -14 \leq x_i \leq 14, 0 \leq y_i \leq 23.75. While a player attempting 3-point shots may be one way to solve this problem, I am not convinced that it is a unique solution to this optimization problem. In fact, I am convinced that there are a multiple of solutions to this optimization problem.

This solution is slightly simpler if one realizes that the metric above is symmetric, so that there are only 11 independent components.

Analyzing Lebron James’ Offensive Play

Where is Lebron James most effective on the court?

Based on 2015-2016 data, we obtained from NBA.com the following data which tracks Lebron’s FG% based on defender distance:

lebrondef

From Basketball-Reference.com, we then obtained data of Lebron’s FG% based on his shot distance from the basket:

lebronshotdist

Based on this data, we generated tens of thousands of sample data points to perform a Monte Carlo simulation to obtain relevant probability density functions. We found that the joint PDF was a very lengthy expression(!):

 

Graphically, this was:

lebronjointplot

A contour plot of the joint PDF was computed to be:

lebroncontour

From this information, we can compute where/when LeBron has the highest probability of making a shot. Numerically, we found that the maximum probability occurs when Lebron’s defender is 0.829988 feet away, while Lebron is 1.59378 feet away from the basket. What is interesting is that this analysis shows that defending Lebron tightly doesn’t seem to be an effective strategy if his shot distance is within 5 feet of the basket. It is only an effective strategy further than 5 feet away from the basket. Therefore, opposing teams have the best chance at stopping Lebron from scoring by playing him tightly and forcing him as far away from the basket as possible.