## What if Michael Jordan Played in Today’s NBA?

It seems that one cannot turn on ESPN or any YouTube channel nowadays without the ongoing debate of whether Michael Jordan is better than Lebron, what would happen if Michael Jordan played in today’s NBA, etc… However, I have not seen a single scientific approach to this question. Albeit, it is sort of an impossible question to answer, but, using data science I will try.

From a data science perspective, it only makes sense to look at Michael Jordan’s performance in a single season, and try to predict based on that season how he would perform in the most recent NBA season. That being said, let’s look at Michael Jordan’s game-to-game performance in the 1995-1996 NBA season when the Bulls went 72-10.

Using neural networks and Garson’s algorithm , to regress against Michael Jordan’s per game point total, we note the following:

One can see from this variable importance plot, Michael’s points in a given game were most positively associated with teams that committed a high number of turnovers followed by teams that make a lot of 3-point shots. Interestingly, there was not a strong negative factor on Michael’s points in a given game.

Given this information, and the per-game league averages of the 2017 season, we used this neural network to make a prediction on how many points Michael would average in today’s season:

Michael Jordan: 2017 NBA Season Prediction: 32.91 Points / Game (+/- 6.9)

It is interesting to note that Michael averaged 30.4 Points/Game in the 1995-1996 NBA Season. We therefore conclude that the 1995-1996 Michael would average a higher points/game if he played in today’s NBA.

As an aside, a plot of the neural network used to generate these variable importance plots and predictions is as follows:

What about the reverse question? What if the 2016-2017 Lebron James played in the 1995-1996 NBA? What would happen to his per-game point average? Using the same methodology as above, we used neural networks in combination with Garson’s algorithm to obtain a variable importance plot for Lebron James’ per-game point totals:

One sees from this plot that Lebron’s points every game were most positively impacted by teams that predominantly committed personal fouls, followed by teams that got a lot of offensive rebounds. There were no predominantly strong negative factors that affected Lebron’s ability to score.

Using this neural network model, we then tried to make a prediction on how many points per game Lebron would score if he played in the 1995-1996 NBA Season:

Lebron James: 1995-1996 NBA Season Prediction: 18.81 Points / Game (+/- 4.796)

This neural network model predicts that Lebron James would average 18.81 Points/Game if he played in the 1995-1996 NBA season, which is a drop from the 26.4 Points/Game he averaged this most recent NBA season.

Therefore, at least from this neural network model, one concludes that Lebron’s per game points would decrease if he played in the 1995-1996 Season, while Michael’s number would increase slightly if he played in the 2016-2017 Season.

## So, What’s Wrong with the Knicks?

As I write this post, the Knicks are currently 12th in the Eastern conference with a record of 22-32. A plethora of people are offering the opinions on what is wrong with the Knicks, and of course, most of it being from ESPN and the New York media, most of it is incorrect/useless, here are some examples:

A while ago, I wrote this paper based on statistical learning that shows the common characteristics for NBA playoff teams. Basically, I obtained the following important result:

This classification tree shows along with arguments in the paper, that while the most important factor in teams making the playoffs tends to be the opponent number of assists per game, there are paths to the playoffs where teams are not necessarily strong in this area. Specifically, for the Knicks, as of today, we see that:

opp. Assists / game : 22.4 > 20. 75, STL / game: 7. 2 < 8.0061, TOV / game : 14.1 < 14.1585, DRB / game: 33.8 > 29.9024, opp. TOV / game: 13.0 < 13.1585.

So, one sees that what is keeping the Knicks out of the playoffs is specifically pressure defense, in that, they are not forcing enough turnovers per game. Ironically, they are very close to the threshold, but, it is not enough.

A probability density approximation of the Knicks’ Opp. TOV/G is as follows:

This PDF has the approximate functional form:

P(oTOV) =

Therefore, by computing:

$\int_{A}^{\infty} P(oTOV) d(oTOV)$,

=

,

where Erfc is the complementary error function, and is given by:

$erfc(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^2} dt$

Given that the threshold for playoff-bound teams is more than 13.1585 opp. TOV/game, setting A = 13 above, we obtain: 0.435. This means that the Knicks have roughly a 43.5% chance of forcing more than 13 TOV in any single game. Similarly, setting A = 14, one obtains: 0.3177. This means that the Knicks have roughly a 31.77% chance of forcing more than 14 TOV in any single game, and so forth.

Therefore, one concludes that while the Knicks problems are defensive-oriented, it is specifically related to pressure defense and forcing turnovers.

By: Dr. Ikjyot Singh Kohli, About the Author

## The Most Optimal Strategy for the Knicks

In a previous article, I showed how one could use data in combination with advanced probability techniques to determine the optimal shot / court positions for LeBron James. I decided to use this algorithm on the Knicks’ starting 5, and obtained the following joint probability density contour plots:

One sees that the Knicks offensive strategy is optimal if and only if players gets shots as close to the basket as possible. If this is the case, the players have a high probability of making shots even if defenders are playing them tightly. This means that the Knicks would be served best by driving in the paint, posting up, and Porzingis NOT attempting a multitude of three point shots.

By the way, a lot of people are convinced nowadays that someone like Porzingis attempting 3’s is a sign of a good offense, as it is an optimal way to space the floor. I am not convinced of this. Spacing the floor geometrically translates to a multi-objective nonlinear optimization problem. In particular, let $(x_i, y_i)$ represent the (x-y)-coordinates of a player on the floor. Spreading the floor means one must maximize (simultaneously) each element of the following distance metric:

subject to $-14 \leq x_i \leq 14, 0 \leq y_i \leq 23.75$. While a player attempting 3-point shots may be one way to solve this problem, I am not convinced that it is a unique solution to this optimization problem. In fact, I am convinced that there are a multiple of solutions to this optimization problem.

This solution is slightly simpler if one realizes that the metric above is symmetric, so that there are only 11 independent components.

## Analyzing Lebron James’ Offensive Play

Where is Lebron James most effective on the court?

Based on 2015-2016 data, we obtained from NBA.com the following data which tracks Lebron’s FG% based on defender distance:

From Basketball-Reference.com, we then obtained data of Lebron’s FG% based on his shot distance from the basket:

Based on this data, we generated tens of thousands of sample data points to perform a Monte Carlo simulation to obtain relevant probability density functions. We found that the joint PDF was a very lengthy expression(!):

Graphically, this was:

A contour plot of the joint PDF was computed to be:

From this information, we can compute where/when LeBron has the highest probability of making a shot. Numerically, we found that the maximum probability occurs when Lebron’s defender is 0.829988 feet away, while Lebron is 1.59378 feet away from the basket. What is interesting is that this analysis shows that defending Lebron tightly doesn’t seem to be an effective strategy if his shot distance is within 5 feet of the basket. It is only an effective strategy further than 5 feet away from the basket. Therefore, opposing teams have the best chance at stopping Lebron from scoring by playing him tightly and forcing him as far away from the basket as possible.

## The Relationship Between The Electoral College and Popular Vote

An interesting machine learning problem: Can one figure out the relationship between the popular vote margin, voter turnout, and the percentage of electoral college votes a candidate wins? Going back to the election of John Quincy Adams, the raw data looks like this:

 Electoral College Party Popular vote  Margin (%) Turnout Percentage of EC John Quincy Adams D.-R. -0.1044 0.27 0.3218 Andrew Jackson Dem. 0.1225 0.58 0.68 Andrew Jackson Dem. 0.1781 0.55 0.7657 Martin Van Buren Dem. 0.14 0.58 0.5782 William Henry Harrison Whig 0.0605 0.80 0.7959 James Polk Dem. 0.0145 0.79 0.6182 Zachary Taylor Whig 0.0479 0.73 0.5621 Franklin Pierce Dem. 0.0695 0.70 0.8581 James Buchanan Dem. 0.12 0.79 0.5878 Abraham Lincoln Rep. 0.1013 0.81 0.5941 Abraham Lincoln Rep. 0.1008 0.74 0.9099 Ulysses Grant Rep. 0.0532 0.78 0.7279 Ulysses Grant Rep. 0.12 0.71 0.8195 Rutherford Hayes Rep. -0.03 0.82 0.5014 James Garfield Rep. 0.0009 0.79 0.5799 Grover Cleveland Dem. 0.0057 0.78 0.5461 Benjamin Harrison Rep. -0.0083 0.79 0.58 Grover Cleveland Dem. 0.0301 0.75 0.6239 William McKinley Rep. 0.0431 0.79 0.6063 William McKinley Rep. 0.0612 0.73 0.6532 Theodore Roosevelt Rep. 0.1883 0.65 0.7059 William Taft Rep. 0.0853 0.65 0.6646 Woodrow Wilson Dem. 0.1444 0.59 0.8192 Woodrow Wilson Dem. 0.0312 0.62 0.5217 Warren Harding Rep. 0.2617 0.49 0.7608 Calvin Coolidge Rep. 0.2522 0.49 0.7194 Herbert Hoover Rep. 0.1741 0.57 0.8362 Franklin Roosevelt Dem. 0.1776 0.57 0.8889 Franklin Roosevelt Dem. 0.2426 0.61 0.9849 Franklin Roosevelt Dem. 0.0996 0.63 0.8456 Franklin Roosevelt Dem. 0.08 0.56 0.8136 Harry Truman Dem. 0.0448 0.53 0.5706 Dwight Eisenhower Rep. 0.1085 0.63 0.8324 Dwight Eisenhower Rep. 0.15 0.61 0.8606 John Kennedy Dem. 0.0017 0.6277 0.5642 Lyndon Johnson Dem. 0.2258 0.6192 0.9033 Richard Nixon Rep. 0.01 0.6084 0.5595 Richard Nixon Rep. 0.2315 0.5521 0.9665 Jimmy Carter Dem. 0.0206 0.5355 0.55 Ronald Reagan Rep. 0.0974 0.5256 0.9089 Ronald Reagan Rep. 0.1821 0.5311 0.9758 George H. W. Bush Rep. 0.0772 0.5015 0.7918 Bill Clinton Dem. 0.0556 0.5523 0.6877 Bill Clinton Dem. 0.0851 0.4908 0.7045 George W. Bush Rep. -0.0051 0.51 0.5037 George W. Bush Rep. 0.0246 0.5527 0.5316 Barack Obama Dem. 0.0727 0.5823 0.6784 Barack Obama Dem. 0.0386 0.5487 0.6171

Clearly, the percentage of electoral college votes a candidate depends nonlinearly on the voter turnout percentage and popular vote margin (%) as this non-parametric regression shows:

We therefore chose to perform a nonlinear regression using neural networks, for which our structure was:

As is turns out, this simple neural network structure with one hidden layer gave the lowest test error, which was 0.002496419 in this case.

Now, looking at the most recent national polls for the upcoming election, we see that Hillary Clinton has a 6.1% lead in the popular vote. Our neural network model then predicts the following:

 Simulation Popular Vote Margin Percentage of Voter Turnout Predicted Percentage of Electoral College Votes (+/- 0.04996417) 1 0.061 0.30 0.6607371 2 0.061 0.35 0.6647464 3 0.061 0.40 0.6687115 4 0.061 0.45 0.6726314 5 0.061 0.50 0.6765048 6 0.061 0.55 0.6803307 7 0.061 0.60 0.6841083 8 0.061 0.65 0.6878366 9 0.061 0.70 0.6915149 10 0.061 0.75 0.6951424

One sees that even for an extremely low voter turnout (30%), at this point Hillary Clinton can expect to win the Electoral College by a margin of 61.078% to 71.07013%, or 328 to 382 electoral college votes. Therefore, what seems like a relatively small lead in the popular vote (6.1%) translates according to this neural network model into a large margin of victory in the electoral college.

One can see that the predicted percentage of electoral college votes really depends on popular vote margin and voter turnout. For example, if we reduce the popular vote margin to 1%, the results are less promising for the leading candidate:

 Pop.Vote Margin Voter Turnout % E.C. % Win E.C% Win Best Case E.C.% Win Worst Case 0.01 0.30 0.5182854 0.4675000 0.5690708 0.01 0.35 0.5244157 0.4736303 0.5752011 0.01 0.40 0.5305820 0.4797967 0.5813674 0.01 0.45 0.5367790 0.4859937 0.5875644 0.01 0.50 0.5430013 0.4922160 0.5937867 0.01 0.55 0.5492434 0.4984580 0.6000287 0.01 0.60 0.5554995 0.5047141 0.6062849 0.01 0.65 0.5617642 0.5109788 0.6125496 0.01 0.70 0.5680317 0.5172463 0.6188171 0.01 0.75 0.5742963 0.5235109 0.6250817

One sees that if the popular vote margin is just 1% for the leading candidate, that candidate is not in the clear unless the popular vote exceeds 60%.

## Breaking Down the 2015-2016 NBA Season

In this article, I will use Data Science / Machine Learning methodologies to break down the real factors separating the playoff from non-playoff teams. In particular, I used the data from Basketball-Reference.com to associate 44 predictor variables which each team: “FG” “FGA” “FG.” “X3P” “X3PA” “X3P.” “X2P” “X2PA” “X2P.” “FT” “FTA” “FT.” “ORB” “DRB” “TRB” “AST”   “STL” “BLK” “TOV” “PF” “PTS” “PS.G” “oFG” “oFGA” “oFG.” “o3P” “o3PA” “o3P.” “o2P” “o2PA” “o2P.” “oFT”   “oFTA” “oFT.” “oORB” “oDRB” “oTRB” “oAST” “oSTL” “oBLK” “oTOV” “oPF” “oPTS” “oPS.G”

, where a letter ‘o’ before the last 22 predictor variables indicates a defensive variable. (‘o’ stands for opponent. )

Using principal components analysis (PCA), I was able to project this 44-dimensional data set to a 5-D dimensional data set. That is, the first 5 principal components were found to explain 85% of the variance.

Here are the various biplots:

In these plots, the teams are grouped according to whether they made the playoffs or not.

One sees from this biplot of the first two principal components that the dominant component along the first PC is 3 point attempts, while the dominant component along the second PC is opponent points. CLE and TOR have a high negative score along the second PC indicating a strong defensive performance. Indeed, one suspects that the final separating factor that led CLE to the championship was their defensive play as opposed to 3-point shooting which all-in-all didn’t do GSW any favours. This is in line with some of my previous analyses