The Three-Point Shot Delusion

The vast majority of NBA analysts claim today that the NBA has changed. It has become more fast-paced, and there is a significantly greater emphasis on teams attempting more three point shots. The evidence for this is the repeated recital of the fact that over the last number of years, the average three-point attempt rate has increased. An example of such an article can be found here. 

It is my hypothesis that this is all based on a very shallow analysis of what is actually going on. In particular, there are more than 60 variables on Basketball-Reference.com that classify each team’s play. It seems strange that analysts have picked out one statistic, noticed a trend, and have made conclusions ushering in the “modern-day” NBA. As I will demonstrate below, using concepts from statistical and machine learning, many things have been missed in their analyses. What is even more strange is that there have been an increasing number of articles claiming that, for example, if teams do not shoot more three point shots, they will probably not make the playoffs or win a championship. Examples of such articles can be found here, here, and here.

I will now demonstrate why all of these analyses are incomplete, and why their conclusions are wholly incorrect.

Using the great service provided by Basketball-Reference.com, I looked at the last 15 seasons of  every NBA team, looking at more than 60 predictor variables that classified each team’s performance in the season. Some of these included: MP FG FGA FG% 3P 3PA 3P% 2P 2PA 2P% FT FTA FT% ORB DRB TRB AST STL BLK TOV PF PTS PTS/G oG oMP oFG oFGA oFG% o3P o3PA o3P% o2P o2PA o2P% oFT oFTA oFT% oORB oDRB oTRB oAST oSTL oBLK oTOV oPF oPTS oPTS/G MOV SOS SRS ORtg DRtg Pace FTr 3PAr TOV% ORB% FT/FGA  TOV% DRB% FT/FGA, where a small “o” indicates a team’s opponent’s statistics.

What classifies a playoff team?

Building a classification tree, I wanted to analyze what factors specifically lead to a team making the playoffs in a given season. I found the following:

fullstatspoffstree

(For this classification tree, the misclassification error rate was 2.73% indicating a good fit to the data.)

 

At the top of the tree, we see that the distinguishing factor is the average MOV/”Margin of Victory” measured per game. Teams that on average beat their opponents by more than 2.695 points are predicted to make the playoffs, while teams that on average lose by more than 1.825 points are predicted to not make the playoffs. Further, the only factor relating to three-point shooting  in this entire classification tree is the o3PA, which is the number of opponent 3-point attempts per game. For example, suppose a team can has an average MOV of less than -0.54 but greater than -1.825. If that team’s opponent attempts more than 16.0732 3-point shots per game, the team is expected to make the playoffs. In this particular case, getting your opponent to take a lot of three point shots is indeed desirable, and leads to the expectation of a team making the playoffs.

 

What classifies a championship team?

The next question to analyze is what characteristics/features classify a championship team. Looking at the last 20 years of playoff data, we see that the following classification tree describes the championship criteria for a given NBA playoff team.

championshiplotnew

(The learning error rate was 1.172% indicating an excellent fit to the data). One sees that at the very top is a team opponent’s field goal percentage (OFG.). If the average per game OFG% is greater than 44.95%, that team is predicted to not win a championship. Further, there are apparently three predicted paths to a championship:

  1. OFG% < 44.95 –> ORtg (Opponent Team Points Scored per 100 possessions) < 108.55 –> FT% < 73.5% –> Opponent Offensive Rebounds per game (OORB) < 30.2405 –> Personal Fouls per game (PF) < 24.1467
  2. OFG% < 44.95 –> ORtg > 108.55 –> O3P% < 32.45%
  3. OFG% < 44.95 –> ORtg > 108.55 –> O3P% > 32.45% –> AST > 19.9076 –> OAST < 19.0938

This shows once again that the three point shot is not at all relevant in winning a championship amongst playoff teams, in that, shooting a lot of threes, or playing as a “modern” team, does not uniquely determine a team’s success. What is tremendously important is defense, and offensive efficiency, and there are multiple ways to achieve this. One does not need to be a prolific three-point shooting team to achieve these metrics. 

 

Conclusions

The increasing  trend of teams shooting more threes and playing at a higher pace still does not uniquely determine whether a team will make the playoffs or win a championship, which is why I have called it a “delusion”. Indeed, the common statement that “nowadays, teams that make the playoffs also have the highest number of three-point shot attempts” is a very shallow statement, and is not actually why teams make the playoffs as this analysis very clearly shows. Further, attempting more three-point shots is not at all uniquely indicative of a team’s success in winning a championship.

Advertisements

Ranking NBA Championship Teams

The first thing to note is that just by looking at Basketball-Reference.com there are 62 factors that uniquely classify a team: MP FG FGA FG% 3P 3PA 3P% 2P 2PA 2P% FT FTA FT% ORB DRB TRB AST STL BLK TOV PF PTS OMP OFG OFGA OFG% O3P O3PA O3P% O2P O2PA O2P% OFT OFTA OFT% OORB ODRB OTRB OAST OSTL OBLK OTOV OPF OPTS PW PL MOV SOS SRS ORtg DRtg Pace FTr 3PAr eFG% TOV% ORB% FT/FGA eFG% TOV% DRB% FT/FGA, where OFGA indicates a given team’s opponent’s FGA per game average for a specific season.
The reason it is not meaningful to look at a specific statistic or a pair of statistics such as “three-point attempt rate” is that,

\boxed{\frac{62!}{2! 60!} = 1891} possible comparisons can be made.

Because of this, what is required is a detailed statistic learning approach. I looked at the full season statistics for the last twenty NBA champions from the 1995-1996 Chicago Bulls to the 2014-2015 Golden State Warriors.

I employed principle compoent analysis (PCA) to reduce the number of dimensions to see which variables contribute most to the variance of the data set. I found that the first 7 of 20 principle compoents explained 88.52% of the variance. Therefore, we can effectively reduce the dimension of the data set from 63 to 7.  This can be seen in the scree plot below:

A visualization of the 63-variable data set is as follows:

A matrix visualization of the full 63-variable data set.
A matrix visualization of the full 63-variable data set.
The power of principle components analysis reduced this high-dimensional dataset to a more manageable (but, perhaps still complicated) 7-dimensional data set, visualized as follows:

A visualization of the reduced-dimension dataset obtained via principle components analysis (PCA).
A visualization of the reduced-dimension dataset obtained via principle components analysis (PCA).
Next, I computed the Euclidean distance metric to perform hierarchical clustering on these seven principle components. I obtained the following result:

NBA Championship teams from 1996-2015
We notice immediately that:

  1. The 2015 Golden State Warriors were very similar to the 2014 San Antonio Spurs.
  2. Not surprisingly, Phil Jackson’s 2000 and 2002 Lakers teams were very similar to each other but not to any other championship team, and similarly for his 2009 and 2010 Lakers teams.
  3. Interestingly, the two teams that stand out which are truly dissimilar to any other championship team are the 2008 Boston Celtics and the 1998 Chicago Bulls.

This analysis also eliminates the notion that a team has to play a specific style, for example “modern-day play” to win a championship. In principle, there are many possible ways and styles that lead to a championship and an analysis such as this deeply probing the data shows this to be the case.

Data Analytics and The 1995-1996 Chicago Bulls

It is without question that the greatest team in NBA history was the 1995-1996 Chicago Bulls. They went 72-10 that year and went on to win the NBA Championship against a top-notch Seattle Supersonics team.  

Phil Jackson’s system and first-class coaching were the major reasons why the Bulls were so good, but I wanted to analyze their reason for winning using data science methodologies.

The results that I found were very interesting. First, I mined through each individual game’s data to obtain patterns in the Bulls wins and losses, and this is what I found:

One sees that the Bulls were a defensive nightmare, and if you look at these results in detail, it makes sense that the Sonics were really the only team that ever posed a threat to them. This shows that to beat the Bulls, the opposing team would have to simultaneously:

  1.  Ensure Ron Harper had a FG% less than 44.95% in a game,
  2. Ensure Dennis Rodman would have less than 17 total rebounds in a game,
  3. Ensure Luc Longley had less than 2 blocks in a game,
  4. Ensure Michael Jordan had a FG% less than 46.55% in a game.

If any one of these conditions were not met, the Bulls would win!

This analysis on some level also dispels the notion espoused by several sports analysts like Skip Bayless of ESPN who continually claim that the Bulls’ sole reason for success was Michael Jordan. Ron Harper’s contributions although of paramount importance are rarely mentioned nowadays.

This analysis also shows that the key to the success of the Bulls was not necessarily the number of points that Jordan scored, but the incredible efficiency with which he scored them.

A boosting algorithm also allows us to deduce the most important characteristics in the Bulls’ quality of play and whether they would win or lose a game.  The results are as follows:

We see that a key feature of the Bulls’ quality of play depends on how efficient Ron Harper in terms of his FG%.

It is quite interesting that this analysis shows that winning a championship is not about one player, sure, every team needs great players, but the Bulls were a great team, consisting of many great components working together.