Optimal Positions for NBA Players

I was thinking about how one can use the NBA’s new SportVU system to figure out optimal positions for players on the court. One of the interesting things about the SportVU system is that it tracks player (x,y) coordinates on the court. Presumably, it also keeps track of whether or not a player located at (x,y) makes a shot or misses it. Let us denote a player making a shot by 1, and a player missing a shot by 0. Then, one essentially will have data in the form (x,y, \text{1/0}).

One can then use a logistic regression to determine the probability that a player at position (x,y) will make a shot:

p(x,y) = \frac{\exp\left(\beta_0 + \beta_1 x + \beta_2 y\right)}{1 +\exp\left(\beta_0 + \beta_1 x + \beta_2 y\right)}

The main idea is that the parameters \beta_0, \beta_1, \beta_2 uniquely characterize a given player’s probability of making a shot.

As a coaching staff from an offensive perspective, let us say we wish to position players as to say they have a very high probability of making a shot, let us say, for demonstration purposes 99%. This means we must solve the optimization problem:

\frac{\exp\left(\beta_0 + \beta_1 x + \beta_2 y\right)}{1 +\exp\left(\beta_0 + \beta_1 x + \beta_2 y\right)} = 0.99

\text{s.t. } 0 \leq x \leq 28, \quad 0 \leq y \leq 47

(The constraints are determined here by the x-y dimensions of a standard NBA court).

This has the following solutions:

x = \frac{-1. \beta _0-1. \beta _2 y+4.59512}{\beta _1}, \quad \frac{-1. \beta _0-28. \beta _1+4.59512}{\beta _2} \leq y

with the following conditions:

constraints1

One can also have:

x = \frac{-1. \beta _0-1. \beta _2 y+4.59512}{\beta _1}, \quad y \leq 47

with the following conditions:

constraints2

Another solution is:

x = \frac{-1. \beta _0-1. \beta _2 y+4.59512}{\beta _1}

with the following conditions:

constraints3

The fourth possible solution is:

x = \frac{-1. \beta _0-1. \beta _2 y+4.59512}{\beta _1}

with the following conditions:

constraints4

In practice, it should be noted, that it is typically unlikely to have a player that has a 99% probability of making a shot.

To put this example in more practical terms, I generated some random data (1000 points) for a player in terms of (x,y) coordinates and whether he made a shot from that distance or not. The following scatter plot shows the result of this simulation:

bballoptim5

In this plot, the red dots indicate a player has made a shot (a response of 1.0) from the (x,y) coordinates given, while a purple dot indicates a player has missed a shot from the (x,y) coordinates given (a response of 0.0).

Performing a logistic regression on this data, we obtain that \beta_0 = 0, \beta_1 = 0.00066876, \beta_2 = -0.00210949.

Using the equations above, we see that this player has a maximum probability of 58.7149 \% of making a shot from a location of (x,y) = (0,23), and a minimum probability of 38.45 \% of making a shot from a location of (x,y) = (28,0).

Basketball Paper Update

Everyone by now knows about this paper I wrote a few months ago: http://arxiv.org/abs/1604.05266

Using data science / machine learning methodologies, it basically showed that the most important factors in characterizing a team’s playoff eligibility are the opponent field goal percentage and the opponent points per game. This seems to suggest that defensive factors as opposed to offensive factors are the most important characteristics shared among NBA playoff teams. It was also shown that championship teams must be able to have very strong defensive characteristics, in particular, strong perimeter defense characteristics in combination with an effective half-court offense that generates high-percentage two-point shots. A key part of this offensive strategy must also be the ability to draw fouls. 

Some people have commented that despite this, teams who frequently attempt three point shots still can be considered to have an efficient offense as doing so leads to better rebounding, floor spacing, and higher percentage shots. We show below that this is not true. Looking at the last 16 years of all NBA teams (using the same data we used in the paper), we performed a correlation analysis of an individual NBA team’s 3-point attempts per game and other relevant variables, and discovered: 


One sees that there is very little correlation between a team’s 3-point attempts per game and 2-point percentage, free throws, free throw attempts, and offensive rebounds. In fact, at best, there is a somewhat “medium” anti-correlation between 3-point attempts per game and a team’s 2-point attempts per game. 

2016 Real-Time Election Predictions

Further to my original post on using physics to predict the outcome of the 2016 US Presidential elections, I have now written a cloud-based app using the powerful Wolfram Cloud to pull the most recent polling data on the web from The HuffPost Pollster, which “tracks thousands of public polls to give you the latest data on elections, political opinions and more”.  This app works in real-time and applies my PDE-solver / machine learning based algorithm to predict the probability of a candidate winning a state assuming the election is held tomorrow.

The app can be accessed by clicking the image below: (Note: If you obtain some type of server error, it means Wolfram’s server is busy, a refresh usually works. Also, results are only computed for states for which there exists reliable polling data. )

 

Will Donald Trump’s Proposed Immigration Policies Curb Terrorism in The US?

In recent days, Donald Trump proposed yet another iteration of his immigration policy which is focused on “Keeping America Safe” as part of his plan to “Make America Great Again!”. In this latest iteration, in addition to suspending visas from countries with terrorist ties, he is also proposing introducing an ideological test for those entering the US. As you can see in the BBC article, he is also fond of holding up bar graphs of showing the number of refugees entering the US over a period of time, and somehow relates that to terrorist activities in the US, or at least, insinuates it.

Let’s look at the facts behind these proposals using the available data from 2005-2014. Specifically, we analyzed:

  1. The number of terrorist incidents per year from 2005-2014 from here (The Global Terrorism Database maintained by The University of Maryland)
  2. The Department of Homeland Security Yearbook of Immigration Statistics, available here . Specifically, we looked at Persons Obtaining Lawful Permanent Resident Status by Region and Country of Birth (2005-2014) and Refugee Arrivals by Region and Country of Nationality (2005-2014).

Given these datasets, we focused on countries/regions labeled as terrorist safe havens and state sponsors of terror based on the criteria outlined here .

We found the following.

First, looking at naturalized citizens, these computations yielded:

Country

Correlations

Percent of Variance Explained 

Afghanistan

0.61169

0.37416

Egypt

0.26597

0.07074

Indonesia

-0.66011

0.43574

Iran

-0.31944

0.10204

Iraq

0.26692

0.07125

Lebanon

-0.35645

0.12706

Libya

0.59748

0.35698

Malaysia

0.39481

0.15587

Mali

0.20195

0.04079

Pakistan

0.00513

0.00003

Phillipines

-0.79093

0.62557

Somalia

-0.40675

0.16544

Syria

0.62556

0.39132

Yemen

-0.11707

0.01371

In graphical form:

The highest correlations are 0.62556 and 0.61669 from Syria and Afghanistan respectively. The highest anti-correlations were from Indonesia and The Phillipines at -0.66011 and -0.79093 respectively. Certainly, none of the correlations exceed 0.65, which indicates that there could be some relationship between the number of naturalized citizens from these particular countries and the number of terrorist incidents, but, it is nowhere near conclusive. Further, looking at Syria, we see that the percentage of variance explained / coefficient of determination is 0.39132, which means that only about 39% of the variation in the number of terrorist incidents can be predicted from the relationship between where a naturalized citizen is born and the number of terrorist incidents in The United States.

Second, looking at refugees, these computations yielded:

Country

Correlations

Percent of Variance Explained

Afghanistan

0.59836

0.35803

Egypt

0.66657

0.44432

Iran

-0.29401

0.08644

Iraq

0.49295

0.24300

Pakistan

0.60343

0.36413

Somalia

0.14914

0.02224

Syria

0.56384

0.31792

Yemen

-0.35438

0.12558

Other

0.54109

0.29278

In graphical form:

We see that the highest correlations are from Egypt (0.6657), Pakistan (0.60343), and Afghanistan (0.59836). This indicates there is some mild correlation between refugees from these countries and the number of terrorist incidents in The United States, but it is nowhere near conclusive. Further, the coefficients of determination from Egypt and Syria are 0.44432 and 0.31792 respectively. This means that in the case of Syrian refugees for example, only 31.792% of the variation in terrorist incidents in the United States can be predicted from the relationship between a refugee’s country of origin and the number of terrorist incidents in The United States.

In conclusion, it is therefore unlikely that Donald Trump’s proposals would do anything to significantly curb the number of terrorist incidents in The United States. Further, repeatedly showing pictures like this:

at his rallies is doing nothing to address the issue at hand and is perhaps only serving as yet another fear tactic as has become all too common in his campaign thus far.

(Thanks to Hargun Singh Kohli, Honours B.A., LL.B. for the initial data mining and processing of the various datasets listed above.)

Note, further to the results of this article, I was recently made aware of this excellent article from The WSJ, which I have summarized below:

Some Thoughts on The US GDP

Here are some thoughts on the US GDP based on some data I’ve been looking at recently, mostly motivated by some Donald Trump supporters that have been criticizing President Obama’s record on the GDP and the economy. 

First, analyzing the real GDP’s average growth per year, we obtain that (based on a least squares regression analysis)

According to these calculations, President Clinton’s economic policies led to the best average GDP growth rate at $436 Billion / year. President Reagan and President Obama have almost identical average GDP growth rates in the neighbourhood of $320 Billion / year. However, an obvious caveat is that President Obama’s GDP record is still missing two years of data, so I will need to revisit these calculations in two years! Also, it should be noted that, historically, the US GDP has grown at an average of about $184 Billion / year. 

The second point I wanted to address is several Trump supporters who keep comparing the average real GDP annual percentage change between President Reagan and President Obama. Although they are citing the averages, they are not mentioning the standard deviations! Computing these we find that:


Looking at these calculations, we find that Presidents Clinton and Obama had the most stable growth in year-to-year real GDP %. Presidents Bush and Reagan had highly unstable GDP growth, with President Bush’s being far worse than President Reagan’s. Further, Trump supporters and most Republicans seem quick to point out the mean of 3.637% figure associated with President Reagan, but the point is this is +/- 2.55%, which indicates high volatility in the GDP under President Reagan, which has not been the case under President Obama. 

Another observation I would like to point out is that very few people have been mentioning the fact that the annual real US GDP % is in fact correlated to that of other countries. Based on data from the World Bank, one can compute the following correlations: 


One sees that the correlation between the annual growth % of the US real GDP and Canada is 0.826, while for Estonia and The UK is roughly close to 0.7. Therefore, evidently, any President that claims that his policies will increase the GDP, is not being truthful, since, it is quite likely that these numbers also depend on those for other countries, which, I am not entirely  convinced a US President has complete control over!

My final observation is with respect to the quarterly GDP numbers. There are some articles that I have seen in recent days in addition to several television segments in which Trump supporters are continuously citing how better Reagan’s quarterly GDP numbers were compared to Obama’s. We now show that in actuality this is not the case. 

The problem is that most of the “analysts” are just looking at the raw data, which on its face value actually doesn’t tell you much, since, as expected, fluctuates. Below, we analyze the quarterly GDP% data during the tenure of both Presidents Reagan and Obama, from 1982-1988 and 2010-2016 respectively, comparing data from the same length of time. 

For Reagan, we obtain: 


For Obama, we obtain:


The only way to reasonably compare these two data sets is to analyze the rate at which the GDP % has increased in time. Since the data is nonlinear in time, this means we must calculate the derivatives at instants of time / each quarter. We first performed cubic spline interpolation to fit curves to these data sets, which gave extremely good results: 


We then numerically computed the derivative of these curves at each quarter and obtained: 

The dashed curves in the above plot are plots of the derivatives of each curve at each quarter. In terms of numbers, these were found to be: 


Summarizing the table above in graphical format, we obtain: 


As can be calculated easily, Obama has higher GDP quarterly growth numbers for 15/26 (57.69%) quarters. Therefore, even looking at the quarterly real GDP numbers, overall, President Obama outperforms President Reagan. 

Thanks to Hargun Singh Kohli, B.A. Honours, LL.B. for the data collection and processing part of this analysis. 

What are the factors behind Golden State’s and Cleveland’s Wins in The NBA Finals

As I write this, Cleveland just won the series 4-3. What was behind each team’s wins and losses in this series?

First, Golden State: A correlation plot of their per game predictor variables versus the binary win/loss outcome is as follows: 


The key information is in the last column of this matrix: 


Evidently, the most important factors in GSW’s winning games were Assists, number of Field Goals made, Field Goal percentage, and steals. The most important factors in GSW losing games this series were number of three point attempts per game (Imagine that!), and number of personal fouls per game. 

Now, Cleveland: A correlation plot of their per game predictor variables versus the binary win/loss outcome is as follows: 


The key information is in the last column of this matrix: 


Evidently, the most important factor in CLE’s wins was their number of defensive rebounds. Following behind this were number of three point shots made, and field goal percentage. There were some weak correlations between Cleveland’s losses and their number of offensive rebounds and turnovers. 

Note that these results are essentially a summary analysis of previous blog postings which tracked individual games. For example, here , here and a first attempt here.