## The Trump Rally, Really?

Today, The Dow Jones Industrial Average (DJIA) surpassed the 20,000 mark for the first time in history. At the time of the writing of this posting (12:31 PM on January 25), it is actually 20,058.29, so, I am not sure if it will close above 20,000 points, but, nevertheless, a lot of people are crediting this to Trump’s presidency, but I’m not so sure you can do that. First, the point must be made, that it is really the Obama economic policies that set the stage for this. On January 20, 2009, when Obama was sworn in, the Dow closed at 7949.089844 points. On November 8, 2016, when Trump won the election, the Dow closed at 18332.74023. So, during the Obama administration, the Dow increased by approximately 130.63%. I just wanted to make that point.

Now, the question that I wanted to investigate was would the Dow have closed past 20,000 points had Trump not been elected president. That is, assuming that the Obama administration policies and subsequent effects on the Dow were allowed to continue, would the Dow have surpassed 20,000 points.

For this, I looked at the DJIA data from January 20, 2009 (Obama’s first inauguration) to November 08, 2016 (Trump’s election). I specifically calculated the daily returns and discovered that they are approximately normally distributed using a kernel density method:

Importantly, one can calculate that the mean daily returns, $\mu = 0.00045497596503813$, while the volatility in daily returns, $\sigma = 0.0100872666938282$. Indeed, the volatility in daily returns for the DJIA was found to be relatively high during this period. Finally, the DJIA closed at 18332.74023 points on election night, November 08, 2016, which was 53 business days ago.

The daily dynamics of the DJIA can be modelled by the following stochastic differential equation:

$S_{t} = S_{t-1} + \mu S_{t-1} dt + \sigma S_{t-1} dW$,

where $dW$ denotes a Wiener/Brownian motion process. Simulating this on computer, I ran 2,000,000 Monte Carlo simulations to simulate the DJIA closing price 53 business days from November 08, 2016, that is, January 25, 2017. The results of some of these simulations are shown below:

We concluded the following from our simulation. At the end of January 25, 2017, the DJIA was predicted to close at:

$18778.51676 \pm 1380.42445$

That is, the DJIA would be expected to close anywhere between 17398.0923062336 and 20158.94121. This range, albeit wide, is due to the high volatility of the daily returns in the DJIA, but, as you can see, it is perfectly feasible that the DJIA would have surpassed 20,000 points if Trump would not have been elected president.

Further, perhaps what is of more importance is the probability that the DJIA would surpass 20,000 points at any time during this 54-day period. We found the following:

One sees that there is an almost 20% (more precisely, 18.53%) probability that the DJIA would close above 20,000 points on January 25, 2017 had Trump not been elected president. Since, by all accounts, the DJIA exceeding 20,000 points is considered to be an extremely rare/historic event, the fact that the probability is found to be almost 20% is actually quite significant, and shows, that it is quite likely that a Trump administration actually has little to do with the DJIA exceeding 20,000 points.

Although, this simulation was just for 53 working days from Nov 08, 2016, one can see that the probability of the DJIA exceeding 20,000 at closing day is monotonically increasing with every passing day. It is therefore quite feasible to conclude that Trump being president actually has little to do with the DJIA exceeding 20,000 points, rather, one can really attribute it to the day-to-day volatility of the DJIA!

## Some Thoughts on The US GDP

Here are some thoughts on the US GDP based on some data I’ve been looking at recently, mostly motivated by some Donald Trump supporters that have been criticizing President Obama’s record on the GDP and the economy.

First, analyzing the real GDP’s average growth per year, we obtain that (based on a least squares regression analysis)

According to these calculations, President Clinton’s economic policies led to the best average GDP growth rate at $436 Billion / year. President Reagan and President Obama have almost identical average GDP growth rates in the neighbourhood of$320 Billion / year. However, an obvious caveat is that President Obama’s GDP record is still missing two years of data, so I will need to revisit these calculations in two years! Also, it should be noted that, historically, the US GDP has grown at an average of about \$184 Billion / year.

The second point I wanted to address is several Trump supporters who keep comparing the average real GDP annual percentage change between President Reagan and President Obama. Although they are citing the averages, they are not mentioning the standard deviations! Computing these we find that:

Looking at these calculations, we find that Presidents Clinton and Obama had the most stable growth in year-to-year real GDP %. Presidents Bush and Reagan had highly unstable GDP growth, with President Bush’s being far worse than President Reagan’s. Further, Trump supporters and most Republicans seem quick to point out the mean of 3.637% figure associated with President Reagan, but the point is this is +/- 2.55%, which indicates high volatility in the GDP under President Reagan, which has not been the case under President Obama.

Another observation I would like to point out is that very few people have been mentioning the fact that the annual real US GDP % is in fact correlated to that of other countries. Based on data from the World Bank, one can compute the following correlations:

One sees that the correlation between the annual growth % of the US real GDP and Canada is 0.826, while for Estonia and The UK is roughly close to 0.7. Therefore, evidently, any President that claims that his policies will increase the GDP, is not being truthful, since, it is quite likely that these numbers also depend on those for other countries, which, I am not entirely  convinced a US President has complete control over!

My final observation is with respect to the quarterly GDP numbers. There are some articles that I have seen in recent days in addition to several television segments in which Trump supporters are continuously citing how better Reagan’s quarterly GDP numbers were compared to Obama’s. We now show that in actuality this is not the case.

The problem is that most of the “analysts” are just looking at the raw data, which on its face value actually doesn’t tell you much, since, as expected, fluctuates. Below, we analyze the quarterly GDP% data during the tenure of both Presidents Reagan and Obama, from 1982-1988 and 2010-2016 respectively, comparing data from the same length of time.

For Reagan, we obtain:

For Obama, we obtain:

The only way to reasonably compare these two data sets is to analyze the rate at which the GDP % has increased in time. Since the data is nonlinear in time, this means we must calculate the derivatives at instants of time / each quarter. We first performed cubic spline interpolation to fit curves to these data sets, which gave extremely good results:

We then numerically computed the derivative of these curves at each quarter and obtained:

The dashed curves in the above plot are plots of the derivatives of each curve at each quarter. In terms of numbers, these were found to be:

Summarizing the table above in graphical format, we obtain:

As can be calculated easily, Obama has higher GDP quarterly growth numbers for 15/26 (57.69%) quarters. Therefore, even looking at the quarterly real GDP numbers, overall, President Obama outperforms President Reagan.

Thanks to Hargun Singh Kohli, B.A. Honours, LL.B. for the data collection and processing part of this analysis.

## 2016 Michigan Primary Predictions

Using the Monte Carlo techniques I have described in earlier posts, I ran several simulations today to try to predict who will win the 2016 Michigan primaries. Here is what I found:

For the Republican primaries, I predict:

Trump: 89.64% chance of winning

Cruz: 5.01% chance of winning

Kasich: 3.29% chance of winning

Rubio: 2.06% chance of winning

The following plot is a histogram of the simulations:

## The Effect of Individual State Election Results on The National Election

A short post by me today. I wanted to look at the which states are important in winning the national election. Looking at the last 14 presidential elections, I generated the following correlation plot:

For those not familiar with how correlation plots work, the number bar on the right-hand-side of the graph indicates the correlation between a state on the left side with a state at the top, with the last row and column respectively indicating the national presidential election winner. Dark blue circles representing a correlation close to 1, indicate a strong relationship between the two variables, while orange-to-red circles representing a correlation close to -1 indicate a strong anti-correlation between the two variables, while almost white circles indicate no correlation between the two variables.

For example, one can see there is a very strong correlation between who wins Nevada and the winner of the national election. Indeed, Nevada has picked the last 13 of 14 U.S. Presidents. Darker blue circles indicate a strong correlation, while lighter orange-red circles indicate a weak correlation. This also shows the correlation between winning states. For example, from the plot above, candidates who win Alabama have a good chance of winning Mississippi or Wyoming, but virtually no chance of winning California.

This could serve as a potential guide in determining which states are extremely important to win during the election season!

## Hillary Clinton Still Has the Best Chance of Being The Democratic Party Nominee in 2016

A great deal of noise has been made in the previous weeks about the surge in the polls of Donald Trump and Bernie Sanders. This has led some people to question whether Hillary Clinton will actually end up being the Democratic party nominee in 2016. This was further evidenced by the fact that Sanders is now leading Clinton in the latest New Hampshire polls.

However, running an analysis on current polling data, I still believe that even though it is very early, Hillary Clinton still has the best chance of being the Democratic party nominee. In fact, running some algorithms against the current data, I found that:

Hillary Clinton: $\boxed{99.9 \%}$ chance of winning Democratic nomination.

Bernie Sanders: $\boxed{0.01\%}$ chance of winning Democratic nomination.

These numbers were deduced from an algorithm that used non-parametric methods to obtain the following probability density functions.

Thanks to Hargun Singh Kohli for data compilation and research.