Categories

The Most Optimal Strategy for the Knicks

In a previous article, I showed how one could use data in combination with advanced probability techniques to determine the optimal shot / court positions for LeBron James. I decided to use this algorithm on the Knicks’ starting 5, and obtained the following joint probability density contour plots: One sees that the Knicks offensive strategy […]

Categories

Breaking Down the 2015-2016 NBA Season

In this article, I will use Data Science / Machine Learning methodologies to break down the real factors separating the playoff from non-playoff teams. In particular, I used the data from Basketball-Reference.com to associate 44 predictor variables which each team: “FG” “FGA” “FG.” “X3P” “X3PA” “X3P.” “X2P” “X2PA” “X2P.” “FT” “FTA” “FT.” “ORB” “DRB” “TRB” […]

Categories

Optimal Positions for NBA Players

I was thinking about how one can use the NBA’s new SportVU system to figure out optimal positions for players on the court. One of the interesting things about the SportVU system is that it tracks player coordinates on the court. Presumably, it also keeps track of whether or not a player located at makes […]

Categories

Everyone by now knows about this paper I wrote a few months ago: http://arxiv.org/abs/1604.05266 Using data science / machine learning methodologies, it basically showed that the most important factors in characterizing a team’s playoff eligibility are the opponent field goal percentage and the opponent points per game. This seems to suggest that defensive factors as […]

Categories

The Mathematics of The Triangle Offense, Continued…

In a previous post, I showed how given random positions of 5 players on the court that they could “fill” the triangle. The main geometric constraint is that 5 players can form 3 triangles on the court, and that due to spacing requirements, these triangles are “optimal” if they are equilateral triangles. Given that we […]

Categories

The Mathematics of “Filling the Triangle”

I’ve been fascinated by the triangle offense for a long time. I think it is a beautiful way to play basketball, and the right way to play basketball, in the half-court, a “system-based” way to play. For those of you that are interested, I highly recommend Tex Winter’s classic book on the topic. There is […]

Categories

Breakdown of Game 7 between OKC and GSW

Here is the collection of time series of relevant predictor variables captured live during Game 7 of the Western Conference Finals between The Oklahoma City Thunder and The Golden State Warriors: Another video animation: https://twitter.com/dr_ikjyotsinghk/status/737694089437716480 Many commentators are making a point to mention how many three point shots The Warriors made, suggesting that that was […]

Categories

Metrics for GSW vs. OKC Game 6 Second Half

Continuing with the live metrics employed yesterday, here is an analysis of the second half of the Warriors-Thunder Game 6.  Here is a plot of the various time series of relevant statistical variables:  One can see from this plot for example, the exact point in time when OKC loses control of the game.  Further, here […]

Categories

Live Metrics for NBA Games

Yesterday for the first time, I took the playoff game between Cleveland and Toronto as an opportunity to test out a script I wrote in R that keeps track of key statistics during a game in real time (well, every 30 seconds). Based on previous work, it is evident that championship-calibre teams are the ones […]

Categories